1.3 Transition Metals

Electronic Configuration of Transition Metals

- d-block transition metals have an incomplete d-subshell in at least one of their *ions*.
- 4s electrons are lost before 3d electrons during ionisation to positive ions
- filling of d-orbitals follows the Aufbau Principle

	Electronic Configuration	
Element	Spectroscopic Notation	Orbital Box Notation (d-block only)
Scandium	[Ar] 3d ¹ 4s ²	
Titanium	[Ar] 3d ² 4s ²	
Vanadium	[Ar] 3d ³ 4s ²	
Chromium	[Ar] 3d ⁵ 4s ¹	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
Manganese	[Ar] 3d ⁵ 4s ²	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
Iron	[Ar] 3d ⁶ 4s ²	$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$
Cobalt	[Ar] 3d ⁷ 4s ²	$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$
Nickel	[Ar] 3d ⁸ 4s ²	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$
Copper	[Ar] 3d ¹⁰ 4s ¹	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$
Zinc	[Ar] 3d ¹⁰ 4s ²	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

- Cr and Cu are exceptions
 - \circ Cr [Ar] $3d^5$ $4s^1$ Electron borrowed from 4s to achieve
 - \circ Cu [Ar] 3d¹⁰ 4s¹ half-filled or completely-filled d-subshell

Questions

- 1. Write down the electronic configurations in both spectroscopic and orbital box notations for the following atoms and ions
 - a) Cu
 - b) Mn²⁺
 - c) Ti³⁺
 - d) Co
 - e) Co²⁺
 - f) Co³⁺
 - g) Ni⁹⁺
 - h) Cu⁺
 - i) Fe³⁺
- Zinc usually forms the Zn²⁺ ion and the only ion of Scandium is the Sc³⁺ ion. Using spectroscopic notation, write down the electronic configurations for both these ions and use them to explain why zinc and scandium are often not regarded as transition metals.

- Fe²⁺ ions have an oxidation state of +2
- Fe³⁺ ions have an oxidation state of +3
 But what is the oxidation state of Mn in the MnO₄⁻?

Rules for Oxidation States

- 1. Oxidation number in a free or uncombined element in zero e.g. Mg(s) and Cl in Cl_2 gas
- 2. For single atoms ions, the oxidation number is the same as the charge on the ion
 - e.g. Cl⁻ has oxidation number= -1
 - O^{2-} has oxidation number= -2
 - Al³⁺ has oxidation number= +3
- 3. In most compounds oxidation number of
 - i. hydrogen is +1 [except hydrides where H is -1]
 - ii. oxygen is -2 [except peroxides where O is -1]
- 4. The algebraic sum of all the oxidation numbers in a molecule must be zero
- 5. The algebraic sum of all the oxidation numbers in a polyatomic ion must be equal to the charge on the ion

e.g. S in SO_4^{2-} S has oxidation number = +6

Question

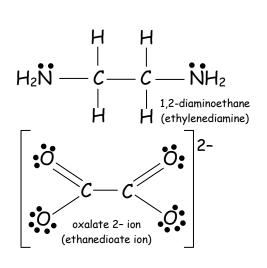
- 1. Use the Rules on Oxidation States to calculate the oxidation states of
 - a) Mn in MnF_2
 - b) S in SO_2
 - c) S in SO_3
 - d) C in CO_3^{2-}
 - e) Mn in MnO₂
 - f) S in SO_4^{2-}
 - g) Mn in MnO_4^{2-}
 - h) Mn in MnO_4^-
 - i) Cu in $CuCl_4^{2-}$

- Oxidation numbers can be used to work out if oxidation or reduction has taken place
 - increase in oxidation number
 oxidation has occurred
 - o decrease in oxidation number reduction has occurred

e.g. $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$ $\xrightarrow{reduction} oxid^n no.=+2$

 compounds containing metals with high oxidation numbers tend to be oxidising agents

o agents are reduced themselves to lower oxidation number


- compounds containing metals with low oxidation numbers tend to be reducing agents
 - o agents are oxidised themselves to increase oxidation number
- Transition metals exhibit various oxidation states of differing stability
 - $\circ~$ It is very common to have an oxidation state of +2 as the $4s^2$ electrons are lost before 3d electrons
 - Subsequent loss of 3d electrons by transition metals forms further oxidation states
- Changing from one oxidation state to another is important in transition metal chemistry
 - It is often characterised by a change in colour

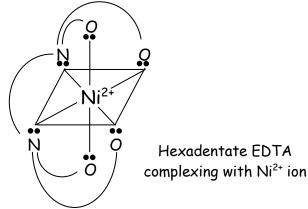
Ion	Oxidation State of Transition Metal	Colour
VO ₃ ⁻	+5	Yellow
VO ²⁺	+4	Blue
V ³⁺	+3	Green
V ²⁺	+2	Violet

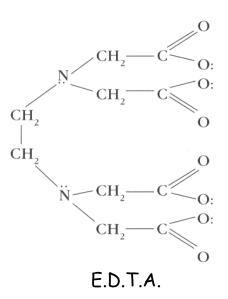
Questions

- 1. Write an ion-electron equation for Fe²⁺ acting as
 - i. an oxidising agent
 - ii. a reducing agent
- 2. Work out the oxidation number of Cr on $Cr_2O_7^{2-}$
 - i. Is the conversion of $Cr_2O_7{}^{2\text{-}}$ to $Cr{}^{3\text{+}}$ is oxidation or reduction?
 - ii. Write an ion-electron equation for this reaction.
 - iii. Is $Cr_2O_7^{2-}$ acting as an oxidising agent or a reducing agent?
- 3. Orange $Cr_2O_7^{2-}$ ions can be converted to yellow CrO_4^{2-} ions.
 - i. What is the oxidation number of Cr in $Cr_2O_7^{2-}$?
 - ii. What is the oxidation number of Cr in CrO_4^{2-} ?
 - iii. Is the conversion of $Cr_2O_7^{2-}$ ions to CrO_4^{2-} ions an example of oxidation or reduction?
- 4. The most common oxidation states of iron ions are +2 and +3.
 - i. Using orbital box notation, draw the electronic configurations of both iron ions.
 - ii. Which of the two ions is most stable?

- A complex consists of a central metal ion surrounded by ligands
- A ligand is a molecule or ion electron donor which bonds to the metal ion by the donation of one or more electron pairs to unfilled metal ion orbitals
 - Water is a common neutral ligand with 2 lone electron pairs
 - $\circ~$ Ammonia NH_3 is neutral ligand with one lone pair
 - There are negative ions which are ligands
 - cyanide ion CN⁻
 - halide ions: F⁻, Cl⁻, Br⁻, I⁻
 - nitrite ion NO2⁻
 - hydroxide ion OH⁻
- Ligands which donate 1 pair of electrons are monodentate
 - $\circ~$ Dentate comes from Latin for tooth
 - $\circ~$ H_2O and NH_3 are monodentate
- Ligands which donate 2 pairs of electrons are bidentate
 - The 2 pairs of electrons must be on different parts of the molecule, not the same atom
 - Oxalate ions and 1,2-diaminoethane are both bidentate

H


••


Н

Н

• polydentate means that a ligand has more than one pair of electrons is donated to the central metal ion

- ligands are called chelating agents (chelate: from the Greek for claw)
- Ethylenediaminetetraacetic acid (EDTA) is a common hexadentate ligand used in volumetric analysis and complexes with metal ions in a ratio of 1:1

Co-ordination Number

- The number of bonds of the ligand(s) to the central ion is called the co-ordination number
 - EDTA has a co-ordination number of 6
 - [Cu(H₂O)₆]²⁺ has a co-ordination number of 6 as the central Cu²⁺ ion is surrounded by 6 water molecules
 - $\circ~[CuCl_4]^{2^-}$ has a co-ordination number of 4 as the central Cu^{2^+} ion is surrounded by 4 negative chloride ions

Naming Complexes

- a) Writing the Formula of Complexes
- standardised set of rules (IUPAC)
- Formula of complex ions are written in square brackets
- Metal symbol comes first
- Negative ligands come next
- Neutral ligands come next
- Overall charge written after square brackets e.g. $[CuCl_4]^{2-}$, $[Cu(H_2O)_6]^{2+}$

b) Writing the Name of Complexes

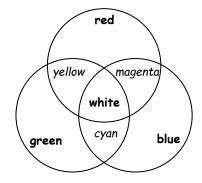
- Ligands should be named first (alphabetically) followed by the name of the central metal ion
- If the ligand is a negative ion
 - ide ending becomes -ido
 - e.g. chloride ions become chlorido
 - cyanide ions become cyanido
 - ate ending become -ato
 - e.g. nitrate NO3⁻ ions become nitrato
 - ite ending becomes -ito
 - e.g. nitrite NO_2^- ions become nitrito
- If ligand is neutral

0	If ligand is water	aqua
0	If ligand is ammonia	ammine
0	If ligand is CO	carbonyl

- Mono, di, tri, tetra, penta, hexa, etc prefixes are used for multiple ligands of the same type
- If complex ion is overall a negative ion (anion), the suffix -ate is added to the metal

0	nickel becomes	nickelate (II)
0	iron becomes	ferrate (III) [not ironate]
0	copper becomes	cuprate (II) [not copperate]

- If complex ion is overall a positive ion (cation), the metal does not have the suffix -ate
- The oxidation state of the metal is written after the metal (roman numerals in brackets)


Complex Diagram	Formula of Complex	Name of Complex
NH3 H3N Ni ²⁺ H3N NH3 NH3	[Ni(NH₃)6]²⁺	Hexaamminenickel(II)
$ \begin{array}{c c} CN \\ CN \\ CN \\ Fe^{3+} \\ CN \\ CN$	[Fe(CN) ₆] ³⁻	Hexacyanidoferrate(III)

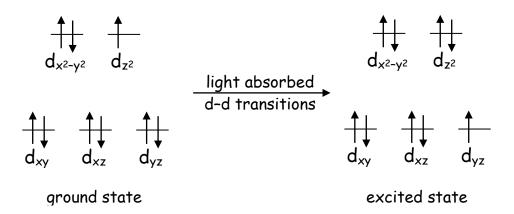
Question

- 1. Name the following complexes
 - a) [CoCl₄]²⁻
 - b) [Ni(H₂O)₆]²⁺
 - c) [Fe(CN)₆]⁴⁻
 - d) [Ti(NH₃)₆]³⁺
 - e) [Ni(CN)₆]⁴⁻
 - f) MnO4⁻
 - g) [P+Cl₆]²⁻
 - h) Ni(CO)4
 - i) [Cu(NH₃)₄]²⁺

Transition metals ions (simple or complex) are often coloured

- ion absorbs light in certain parts of the visible spectrum
- remaining wavelengths are transmitted
- colour seen is complementary to colour absorbed

red absorbed G + B transmitted G cyan (green/blue) observed В R R + B transmitted green G absorbed magenta (red/blue) observed В R R + G transmitted yellow (red/green) observed blue absorbed


In a free ion, all five 3d-orbitals are degenerate (of equal energy)

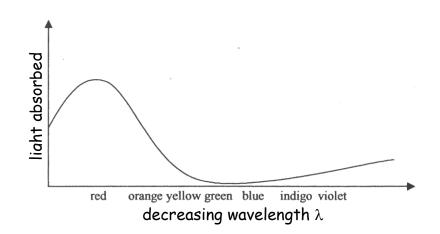
- 3d orbitals are labelled $d_{xy},\,d_{xz},\,d_{yz},\,d_{x^2-y^2},\,d_{z^2}$
- $d_{x^2-y^2}$ and d_{z^2} orbitals are raised to a higher energy level due to electrostatic repulsion from the ligands in the complex
- energy difference between the split in the d-orbitals depends on the ligand involved. Ligands are listed in the Spectrochemical Series

 $I^- \leftarrow Br^- \leftarrow Cl^- \leftarrow F^- \leftarrow H_2O \leftarrow NH_3 \leftarrow CN^-$

Transition metals can absorb light because photons (at a particular energy and therefore particular wavelength) excite electrons in the lower d-orbitals (ground state) up to a higher energy d-orbital (excited state)

- this absorbed energy dissipates as heat energy and does not remerge as light energy
- e.g. Cu²⁺ ion with electron arrangement [Ar] 3d⁹

• For Cu²⁺, blue green is transmitted as red light is absorbed to excite a d-orbital electron.


However

- MnO_4^- ions have Mn in Oxidation State = 7
- Mn has electronic configuration of $1s^2 2s^2 2p^6 3s^2 3p^6$ in this state
- Mn has no electrons in 3d orbital in this state
- Purple colour is caused by different kind of electron transition

- Effect of d-d transitions can be studied using UV and visible spectroscopy
- UV and visible absorption spectroscopy involves the energy difference between and electron's ground and excited states being supplied by particular wavelengths in the UV and visible regions of the EM spectrum

 \circ UV
 λ = 200 - 400 nm
 \sim
 \circ Visible
 λ = 400 - 700 nm

- The particular wavelengths used to promoted (excite) electrons are removed from the light passing through the sample and appear as dark lines in the transmitted light spectrum
- The spectrophotometer compares the reduced intensity of particular wavelengths from the sample against the original intensity of the light passing though the sample

• Transition metals often act as catalysts in a wide selection of chemical reactions

Process	Reaction	Catalyst Used
Haber	N_2 + $3H_2 \rightarrow 2NH_3$	Fe granules
Contact	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$	V ₂ O ₅
Ostwald	4NH ₃ + 5O ₂ → 4NO + 6H ₂ O	Pt gauze
Catalytic Converter in car exhaust	$4CO + 2NO_2 \rightarrow 4CO_2 + N_2$	Platinum Pt, Palladium Pd and Rhodium Rh
Preparation of Methanol	CO + 2H₂ → CH₃OH	Copper
Preparation of Margarine	$C_{17}H_{33}COOH + H_2 \rightarrow C_{17}H_{35}COOH$	Nickel
Polymerisation of Alkenes	$n C_2H_4 \rightarrow (C_2H_4)_n$	Titanium compounds

- Transition metals can form a variable number of bonds due to the availability of unoccupied and half-filled d-orbitals
- This allows the easier formation of intermediate complexes
- This provides reaction pathways of lower energy to proceed
- The variability of oxidation state of transition metals is another important factor. The transition metal reverts to original oxidation state once the reaction is complete